逆矩陣的行列式等于行列式的倒數(shù),設(shè)A是一個n階矩陣,若存在另一個n階矩陣B,使得: AB=BA=E ,則稱方陣A可逆,并稱方陣B是A的逆矩陣。
內(nèi)容導(dǎo)航行列式運算法則逆矩陣的性質(zhì)定理有哪些行列式運算法則1、三角形行列式的值,等于對角線元素的乘積。計算時,一般需要多次運算來把行列式轉(zhuǎn)換為上三角型或下三角型。
2、交換行列式中的兩行(列),行列式變號。
3、行列式中某行(列)的公因子,可以提出放到行列式之外。
4、行列式的某行乘以a,加到另外一行,行列式不變,常用于消去某些元素。
5、若行列式中,兩行(列)完全一樣,則行列式為0;可以推論,如果兩行(列)成比例,行列式為0。
6、行列式展開:行列式的值,等于其中某一行(列)的每個元素與其代數(shù)余子式乘積的和;但若是另一行(列)的元素與本行(列)的代數(shù)余子式乘積求和,則其和為0。
7、在求解代數(shù)余子式相關(guān)問題時,可以對行列式進行值替代。
8、克拉默法則:利用線性方程組的系數(shù)行列式求解方程。
逆矩陣的性質(zhì)定理有哪些1、可逆矩陣一定是方陣。
2、如果矩陣A是可逆的,其逆矩陣是唯一的。
3、A的逆矩陣的逆矩陣還是A。記作(A-1)-1=A。
4、可逆矩陣A的轉(zhuǎn)置矩陣AT也可逆,并且(AT)-1=(A-1)T (轉(zhuǎn)置的逆等于逆的轉(zhuǎn)置)
5、若矩陣A可逆,則矩陣A滿足消去律。即AB=O(或BA=O),則B=O,AB=AC(或BA=CA),則B=C。
6、兩個可逆矩陣的乘積依然可逆。
7、矩陣可逆當且僅當它是滿秩矩陣。
證明:
1、逆矩陣是對方陣定義的,因此逆矩陣一定是方陣。
2、設(shè)B與C都為A的逆矩陣,則有B=C
3、假設(shè)B和C均是A的逆矩陣,B=BI=B(AC)=(BA)C=IC=IC,因此某矩陣的任意兩個逆矩陣相等。
4、由逆矩陣的唯一性,A-1的逆矩陣可寫作(A-1)-1和A,因此相等。
本文鏈接:http://www.huatongxinda.com/wenzhang/144070.html
相鄰文章
