特殊角的三角函數值表_三角函數值公式
在高中的數學學習三角函數中,其中有一些特殊角,例如30°、45°、60°,這些角的三角函數值為簡單單項式,計算中可以直接求出具體的值。下面小編給大家整理了關于特殊角的三角函數值表的內容,歡迎閱讀,內容僅供參考!
內容導航特殊角三角函數值公式大全2角函數介紹特殊角三角函數值公式大全sin30°=1/2 sin45°=√2/2 sin60°=√3/2
cos30°=√3/2 cos45°=√2/2 cos60°=1/2
tan30°=√3/3 tan45°=1 tan60°=√3
cot30°=√3 cot45°=1 cot60°=√3/3
sin15°=(√6-√2)/4 sin75°=(√6+√2)/4 cos15°=(√6+√2)/4
cos75°=(√6-√2)/4(這四個可根據sin(45°±30°)=sin45°cos30°±cos45°sin30°得出) sin18°=(√5-1)/4 (這個值在高中競賽和自招中會比較有用,即黃金分割的一半)
正弦定理:在△ABC中,a / sin A = b / sin B = c / sin C = 2R (其中,R為△ABC的外接圓的半徑。)
三角函數的誘導公式(六公式)
公式一:
sin(α+k__2π)=sinα cos(α+k__2π)=cosα tan(α+k__2π)=tanα 公式二:
sin(π+α) = -sinα cos(π+α) = -cosα tan(π+α)=tanα 公式三:
sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα
公式四:
sin(π-α) = sinα cos(π-α) = -cosα tan(π-α) =-tanα
公式五:
sin(π/2-α) = cosα cos(π/2-α) =sinα
由于π/2+α=π-(π/2-α),由公式四和公式五可得
公式六:
sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα
誘導公式 記背訣竅:奇變偶不變,符號看象限。
和(差)角公式
三角和公式
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·coscγ-osα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanα·tanγ)
(α+β+γ≠π/2+2kπ,α、β、γ≠π/2+2kπ)
積化和差的四個公式
sina__cosb=(sin(a+b)+sin(a-b))/2
cosa__sinb=(sin(a+b)-sin(a-b))/2
cosa__cosb=(cos(a+b)+cos(a-b))/2
sina__sinb=-(cos(a+b)-cos(a-b))/2
和差化積的四個公式:
sinx+siny=2sin((x+y)/2)__cos((x-y)/2)
sinx-siny=2cos((x+y)/2)__sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)__cos((x-y)/2)
cosx-cosy=-2sin((x+y)/2)__sin((x-y)/2)
2角函數介紹正弦函數
主詞條:正弦函數。
格式:sin(θ)。
作用:在直角三角形中,將大小為θ(單位為弧度)的角對邊長度比斜邊長度的比值求出,函數值為上述比的比值,也是csc(θ)的倒數。
函數圖像:波形曲線。
值域:-1~1。
余弦函數
主詞條:余弦函數。
格式:cos(θ)。
作用:在直角三角形中,將大小為(單位為弧度)的角鄰邊長度比斜邊長度的比值求出,函數值為上述比的比值,也是sec(θ)的倒數。
函數圖像:波形曲線。
值域:-1~1。
正切函數
主詞條:正切函數。
格式:tan(θ)。
作用:在直角三角形中,將大小為θ(單位為弧度)的角對邊長度比鄰邊長度的比值求出,函數值為上述比的比值,也是cot(θ)的倒數。
函數圖像:右圖平面直角坐標系反映。
值域:-∞~∞。
余切函數
主詞條:余切函數。
格式:cot(θ)。
作用:在直角三角形中,將大小為θ(單位為弧度)的角鄰邊長度比對邊長度的比值求出,函數值為上述比的比值,也是tan(θ)的倒數。
函數圖像:右圖平面直角坐標系反映。
值域:-∞~∞。
正割函數
主詞條:正割函數。
格式:sec(θ)。
作用:在直角三角形中,將斜邊長度比大小為θ(單位為弧度)的角鄰邊長度的比值求出,函數值為上述比的比值,也是cos(θ)的倒數。
函數圖像:右圖平面直角坐標系反映。
值域:≥1或≤-1。
余割函數
主詞條:余割函數。
格式:csc(θ)。
作用:在直角三角形中,將斜邊長度比大小為θ(單位為弧度)的角對邊長度的比值求出,函數值為上述比的比值,也是sin(θ)的倒數。
函數圖像:右圖平面直角坐標系反映。
值域:≥1或≤-1。
本文鏈接:http://www.huatongxinda.com/wenzhang/147010.html
相鄰文章
